您现在所在的位置: 主页 > 资讯中心 >

上海硅酸盐所等在BNT基无铅铁电陶瓷研究方面取

作者:体育投注    更新时间:2019-11-17 22:09

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。/ 更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  铁电材料具有丰富的外场诱导相变行为和复杂的耦合效应,在能量存储及转换领域具有重要应用。目前工程上应用的主要材料是Pb(Zr,Ti)O3(PZT)体系,探索和研发新的材料体系,特别是无铅材料体系,是当前铁电材料领域研究热点和发展趋势。(Bi0.5Na0.5)TiO3(BNT)基铁电陶瓷因具有优异的铁电性能、弛豫特性以及微区结构复杂等特点备受关注,被认为是有望取代PZT基铁电陶瓷的重要体系之一。但是纯BNT铁电陶瓷矫顽场大、电阻率低和退极化温度(Td)低等缺点限制了其应用。如何通过组成和微结构设计增强BNT陶瓷的综合性能以及揭示相关物理机制是该领域的一个重要课题。

  最近,中国科学院上海硅酸盐研究所信息功能材料与器件研究中心研究员董显林和王根水带领的研究团队以BNT陶瓷为基体,通过组成和结构设计,实现了BNT铁电陶瓷体系抗冲击应力和电荷密度以及储能密度和储能效率等性能的显著提升,并揭示了性能增强的物理机制。该团队以BNT-BA材料体系为基体,固溶NaNbO3有效地调控陶瓷的相结构和显微结构,获得兼具高剩余极化强度Pr(41μC/cm2)、低介电损耗、高电阻率和高Td(175oC)的陶瓷组分。通过等静压以及冲击波加载实验系统研究了BNT基铁电陶瓷在冲击波下的放电行为和物理机制,在8.2GPa冲击压力下释放的电荷密度高达38mC/cm2,比PZT95/5铁电陶瓷提高~20%,抗冲击应力和电荷密度均为目前报道的最大值。相关结果发表在Applied Physics Letters,113,082901(2018)、Journal of the American Ceramic Society, 101, 4044-4052 (2018)、Journal of Applied Physics,123, 036301 (2018)及Journal of the American Ceramic Society,102, 2569-2577 (2019)上。论文第一作者为博士研究生彭萍,通讯作者为董显林和副研究员聂恒昌。

  该团队还通过弛豫调控策略设计了一种新型BNT基介电储能陶瓷材料,储能密度和储能效率分别提高至3.08 J/cm3和81.4%。其设计思路是在BNT基体中引入Sr0.85Bi0.10.1TiO3(代表A位空位)及NaNbO3,通过引入A位空位及离子取代产生的应力失配和电荷不平衡形成局域随机场,打破BNT基体中偶极子的长程有序结构,形成弱耦合极性纳米微区,有利于获得较高的储能密度(Wrec)及储能效率(h)。同时发现在RT~100℃及1Hz~100Hz测试条件下,其储能特性还具有优异的稳定性,该材料有望成为介质储能电容器的候选材料。相关工作发表在Journal of Materials Chemistry C,7, 6222-6230 (2019)和Rsc Advances,9, 21355-21362 (2019)上。论文第一作者为硕士研究生吴宜宸,通讯作者为王根水。

  该团队与应用单位合作,利用冲击波加载实验在BNT基铁电陶瓷中获得了目前报道最高的功率输出密度,并揭示了其在高压下的相变机制。相关结果发表在Physic Review Materials3, 035401 (2019)上。该论文第一作者为中国工程物理研究院流体物理研究所副研究员高志鹏,通讯作者为王根水。

  以上研究结果表明BNT基铁电陶瓷在铁电体高功率脉冲技术和介质储能电容器等方面具有潜在的应用前景。相关研究得到国家自然科学基金、上海市自然科学基金、中科院青年创新促进会、中国工程物理研究院院长基金的支持。

  铁电材料具有丰富的外场诱导相变行为和复杂的耦合效应,在能量存储及转换领域具有重要应用。目前工程上应用的主要材料是Pb(Zr,Ti)O3(PZT)体系,探索和研发新的材料体系,特别是无铅材料体系,是当前铁电材料领域研究热点和发展趋势。(Bi0.5Na0.5)TiO3(BNT)基铁电陶瓷因具有优异的铁电性能、弛豫特性以及微区结构复杂等特点备受关注,被认为是有望取代PZT基铁电陶瓷的重要体系之一。但是纯BNT铁电陶瓷矫顽场大、电阻率低和退极化温度(Td)低等缺点限制了其应用。如何通过组成和微结构设计增强BNT陶瓷的综合性能以及揭示相关物理机制是该领域的一个重要课题。

  最近,中国科学院上海硅酸盐研究所信息功能材料与器件研究中心研究员董显林和王根水带领的研究团队以BNT陶瓷为基体,通过组成和结构设计,实现了BNT铁电陶瓷体系抗冲击应力和电荷密度以及储能密度和储能效率等性能的显著提升,并揭示了性能增强的物理机制。该团队以BNT-BA材料体系为基体,固溶NaNbO3有效地调控陶瓷的相结构和显微结构,获得兼具高剩余极化强度Pr(41μC/cm2)、低介电损耗、高电阻率和高Td(175oC)的陶瓷组分。通过等静压以及冲击波加载实验系统研究了BNT基铁电陶瓷在冲击波下的放电行为和物理机制,在8.2GPa冲击压力下释放的电荷密度高达38 mC/cm2,比PZT95/5铁电陶瓷提高~20%,抗冲击应力和电荷密度均为目前报道的最大值。相关结果发表在Applied Physics Letters, 113, 082901 (2018)、Journal of the American Ceramic Society, 101, 4044-4052 (2018)、Journal of Applied Physics, 123, 036301 (2018)及Journal of the American Ceramic Society, 102, 2569-2577 (2019)上。论文第一作者为博士研究生彭萍,通讯作者为董显林和副研究员聂恒昌。

  该团队还通过弛豫调控策略设计了一种新型BNT基介电储能陶瓷材料,储能密度和储能效率分别提高至3.08 J/cm3和81.4%。其设计思路是在BNT基体中引入Sr0.85Bi0.10.1TiO3(代表A位空位)及NaNbO3,通过引入A位空位及离子取代产生的应力失配和电荷不平衡形成局域随机场,打破BNT基体中偶极子的长程有序结构,形成弱耦合极性纳米微区,有利于获得较高的储能密度(Wrec)及储能效率(h)。同时发现在RT~100℃及1Hz~100Hz测试条件下,其储能特性还具有优异的稳定性,该材料有望成为介质储能电容器的候选材料。相关工作发表在Journal of Materials Chemistry C, 7, 6222-6230 (2019)和Rsc Advances, 9, 21355-21362 (2019)上。论文第一作者为硕士研究生吴宜宸,通讯作者为王根水。

  该团队与应用单位合作,利用冲击波加载实验在BNT基铁电陶瓷中获得了目前报道最高的功率输出密度,并揭示了其在高压下的相变机制。相关结果发表在Physic Review Materials 3, 035401 (2019)上。该论文第一作者为中国工程物理研究院流体物理研究所副研究员高志鹏,通讯作者为王根水。

  以上研究结果表明BNT基铁电陶瓷在铁电体高功率脉冲技术和介质储能电容器等方面具有潜在的应用前景。相关研究得到国家自然科学基金、上海市自然科学基金、中科院青年创新促进会、中国工程物理研究院院长基金的支持。

  A RNA甲基化识别蛋白YTHDF1在低氧适应和非小细胞肺癌发生发展中的重要功能

体育投注,外围网站
上一篇:【中国科技网】西安交大采用轧膜工艺制备出高     下一篇:福建省陶瓷产区首个陶瓷中试基地泉州市中试服